A Nonparametric Dynamic Causal Model for Macroeconometrics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian nonparametric causal model

Typically, in the practice of causal inference from observational studies, a parametric model is assumed for the joint population density of potential outcomes and treatment assignments, and possibly this is accompanied by the assumption of no hidden bias. However, both assumptions are questionable for real data, the accuracy of causal inference is compromised when the data violates either assu...

متن کامل

A dynamic lattice model for heterogeneous materials

In this paper, the mechanical behavior of three-phase inhomogeneous materials is modeled using the meso-scale model with lattice beams for static and dynamic analyses. The Timoshenko beam theory is applied instead of the classical Euler-Bernoulli beam theory and the mechanical properties of lattice beam connection are derived based on the continuum medium using the non-local continuum theory. T...

متن کامل

A dynamic causal model for evoked and induced responses

Neuronal responses exhibit two stimulus or task-related components: evoked and induced. The functional role of induced responses has been ascribed to 'top-down' modulation through backward connections and lateral interactions; as opposed to the bottom-up driving processes that may predominate in evoked components. The implication is that evoked and induced components may reflect different neuro...

متن کامل

Dynamic causal modelling for fMRI: A two-state model

Dynamical causal modelling (DCM) for functional magnetic resonance imaging (fMRI) is a technique to infer directed connectivity among brain regions. These models distinguish between a neuronal level, which models neuronal interactions among regions, and an observation level, which models the hemodynamic responses each region. The original DCM formulation considered only one neuronal state per r...

متن کامل

MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improving parametric statistical models by preprocessing data with nonparametric matching methods. MatchIt implements a wide range of sophisticated matching methods, making it possible to greatly reduce the dependence of causal inferences on hard-to-justify, but commonly made, statistical modeling assumptions. The softw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2019

ISSN: 1556-5068

DOI: 10.2139/ssrn.3345325